
388 

Acta Cryst. (1986). B42, 388-401 

Model Anisotropic Intermolecular Potentials for Saturated Hydrocarbons 

By S. L. PRICE 

University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, England 

(Received 4 October 1985; accepted 24 January 1986) 

Abstract 

The use of explicit orientation-dependent functions, 
to represent the effects of non-spherical features in 
the molecular charge distribution, in model inter- 
molecular pair potentials is developed in order to 
produce more accurate transferable anisotropic site- 
site potentials for organic molecules. An isotropic 
atom-atom intermolecular potential-energy surface 
for methane is analysed using the orientation-depen- 
dent expansion functions appropriate to a pair of 
tetrahedral molecules, to determine the ability of a 
wide variety of one-centred anisotropic model poten- 
tials to reproduce the surface. The analysis is used to 
develop a simple anisotropic carbon potential scheme 
for CH3 and CH2 groups, which can predict the crystal 
structures of pentane, hexane and octane as accur- 
ately as the widely used isotropic atom-atom poten- 
tial, and has the advantage of being more computa- 
tionally efficient and more flexible for future develop- 
ment. The derivation of the appropriate orientation- 
dependent functions for tetrahedral molecules, using 
angular momentum theory, in a form which is very 
convenient for crystal structure analysis is given. 
These functions are also used to examine the use of 
van der Waals radii to predict molecular packing. 

1. Introduction 

Intermolecular forces determine most of the physical 
properties of matter. We need to develop a fuller 
quantitative understanding of intermolecular forces, 
as they control many vital biological processes, such 
as DNA replication and drug-receptor interactions, 
as well as determining the behaviour of technologi- 
cally important phases, such as polymers and organic 
conductors. 

At the simplest level, space-filling molecular 
models, representing the 'excluded volume' or van 
der Waals surface of the molecules, are very useful 
in determining sterically forbidden molecular confor- 
mations and packings. This approach is now being 
applied routinely, even for proteins, by using 
molecular graphics programs to build and manipulate 
the molecular models. Although this analysis pretends 
that molecules have hard edges, and gives no informa- 
tion on the energy associated with the packing, it is 

a valuable tool for the non-specialist, and so the 
capabilities of this simple approach are analysed and 
discussed in Appendix 2. 

The next level of sophistication is to use models 
for the intermolecular forces between the atoms in 
the molecules, plus appropriate models for energy 
changes associated with the intramolecular degrees 
of freedom, to predict molecular conformations and 
crystal structures. Such model potentials can also be 
used in molecular dynamics calculations, or other 
simulation programs, to study the behaviour of 
molecules in any phase. These computer modelling 
techniques are limited by the computing resources 
available, which usually dictates the size of molecule 
which can be studied, and by the accuracy of the 
models used for the intermolecular forces. The first 
limitation is rapidly being overcome by the computer 
revolution, but the second limitation, which deter- 
mines the reliability of the results, is a fundamental 
scientific problem. Although there are many rival sets 
of potential models and parameters in use, they are 
all based on the assumption of the isotropic atom- 
atom potential. In this model, the potential between 
two interaction sites, usually placed at all the atomic 
nuclei, depends only on the separation of the sites, 
and so models the molecule as a superposition of 
spherical charge distributions. This is a reasonable 
first approximation, but has been found to give unac- 
ceptably poor results for certain heteroatoms, unless 
the model is supplemented by extra sites to represent 
the lone-pair interactions (e.g. Profeta & Allinger, 
1985; Williams & Cox, 1984). However, the addition 
of extra sites is a limited and inflexible method of 
improving the potential, and so the use of isotropic 
interaction sites is a major limitation on the accuracy 
of intermolecular potentials for organic molecules. 

At the other extreme, chemical-physics studies of 
the properties of very small polyatomic molecules, 
for example scattering calculations, have described 
the intermolecular potential in terms of the centre-of- 
mass separation and the appropriate expansion func- 
tions for the orientation dependence of the potential, 
which are defined in terms of Wigner rotation 
matrices. This approach uses the power of angular- 
momentum theory to exploit the symmetry of the 
molecule, and is only useful for small highly sym- 
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metric molecules such as diatomics and AXn 
molecules. 

These two approaches to modelling intermolecular 
forces have recently been combined, thereby discard- 
ing the assumption that the intermolecular potentials 
of organic molecules are composed of spherical inter- 
actions, to develop a powerful new approach to model 
potentials with the flexibility to be capable of great 
accuracy. In two highly successful pilot studies on 
C12 and azabenzene molecules (Price & Stone, 1982, 
1984), the appropriate orientation-dependent func- 
tions have been used to develop anisotropic site-site 
potentials for C1, C and N (in aromatic rings) which 
model the significant effects of the CI and N lone 
pairs and the bonded H atoms on the crystal packing. 
Thus the method has the advantage that it can model 
the potentials from non-spherical heteroatoms 
effectively, a pre-requisite for reliable studies on bio- 
logical molecules. The azabenzene project also sug- 
gests that it may be possible to dispense with interac- 
tion sites on most hydrogen atoms, which drastically 
reduces the number of intersite vectors, and so 
increases the computational efficiency as well as the 
accuracy, which is also important for modelling large 
biological molecules. 

In order to develop a transferable scheme for 
modelling the intermolecular potentials of organic 
molecules using anistropic site-site potentials, and 
fewer interaction sites than molecules, it is necessary 
to investigate which of the symmetry-allowed orienta- 
tion-dependent terms will be most important, and 
how they should be incorporated into the functional 
form of the site-site potential. This cannot be done 
unambiguously, because there is, as yet, no 
definitively accurate intermolecular potential for a 
typical organic molecule. It is difficult to develop and 
test potentials by comparison with experimental data, 
as such data are either related to some orientational 
average of the potential, or only sample a limited 
number of relative orientations. However, we can test 
the types of anisotropy and functional forms of a 
one-centred model potential which are required to 
reproduce the isotropic atom-atom potential for 
methane, and use this to develop an anisotropic car- 
bon site-site potential for saturated hydrocarbons. 
Although this procedure is obviously incapable of 
giving potentials which are more accurate than the 
current isotropic atom-atom model, it provides valu- 
able insights into the use of anisotropic potentials in 
modelling intermolecular forces. These general guide- 
lines will be important, not only for developing the 
next generation of transferable intermolecular poten- 
tials for organic molecules, but also for the develop- 
ment of highly accurate potentials for small 
molecules. 

Methane is an important molecule for our under- 
standing of intermolecular forces. It is amongst the 
most spherical and symmetric of molecules, and 

hence its intermolecular potential should be relatively 
conveniently described in terms of a one-centred 
expansion. Alternatively, it can be viewed as the 
extreme case of an atom with a non-spherical charge 
distribution, and so as a test case for developing 
modelling techniques for atoms with non-spherical 
features, such as lone-pair electrons. Methane is also 
a particularly suitable molecule for developing model 
intermolecular potentials, because we can construct 
a reasonable model for its intermolecular potential 
from a transferable atom-atom potential scheme for 
hydrocarbons, since the isotropic atom-atom poten- 
tial has been found particularly successful for satur- 
ated hydrocarbons. 

The first section of this paper uses the expansion 
functions for any scalar property of two identical 
tetrahedral molecules to investigate the anisotropy of 
an isotropic atom-atom potential-energy surface for 
methane. The expansion functions, which are based 
on Wigner rotation matrices, are derived in Appendix 
1 in a novel simple form, which is particularly suitable 
for use in intermolecular potentials. These expansion 
functions are used to examine various characteristic 
measures of the anisotropy of the potential surface, 
which provides clues as to the most appropriate forms 
for model one-centre anisotropic potentials for 
methane. (The expansion functions are also used to 
examine the capabilities of van der Waals surface 
models in Appendix 2.) 

Various one-centred anisotropic model potentials 
for methane are tested for their ability to fit the 
isotropic atom-atom potential-energy surface, 
including both commonly used and novel forms, and 
the use of the expansions for the minimum energy 
[ - e ( O ) ]  and corresponding separation [p(O)]  as a 
function of orientation 12 in various extensions of the 
isotropic ' e x p - 6 '  potential to anisotropic systems. 
The comparison shows that some model potentials 
have significantly greater flexibility, and use param- 
eters more effectively than others. These results are 
very pertinent to the problem of choosing the form 
of potential to input into scattering and simulation 
studies. 

In the second section, one of these simple one- 
centre intermolecular potentials for methane, with 
anisotropic repulsion and isotropic dispersion contri- 
butions, is adapted to model C H  3 and CH2 groups 
in saturated hydrocarbons, by simply adjusting the 
dispersion coefficient according to the number of 
attached hydrogen atoms. This anisotropic carbon 
site-site potential predicts the crystal structures of 
pentane, hexane and octane with the same high 
accuracy as the original isotropic atom-atom poten- 
tial, but is computationally faster by a factor of three 
to four, because of the drastic reduction in the number 
of intersite vectors, which makes the model par- 
ticularly attractive for calculations on large 
molecules. 
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Table 1. Definition of the grid of points representing 
the potential surface 

(a) The relative orientations 

A set of ten orientations of a regular tetrahedron is defined relative to 
space-fixed axes: 

I: Standard orientation (Fig. 1) 
H,(r/`/3)(l ,  1, 1) H2(r/` /3)(-1 , -1 ,  1) 
Ha(r~43)(1,-1 , -1)  Ha(r~43)(-1, 1 , -1 )  

II: Rotate I by 45 ° about x axis 
ndr/43)(1, O, ,/2) H2(r/43)(-1, -,/2, O) 
H3(r/43)(1, O, -,/2) H4(r/,/3)(-1, ,/2, O) 

III: Rotate II by ~ cos - t ( -1 /3 )  about y axis 

nt(r/3)(3,  0, 0) H2(r/3)(-1, -,/6, ,/2) 
H3(r/3)(-1, O, -2,/2) H4(r/3)(-1, ,/6, ,/2) 

IV: Rotate I by 30* about z axis 
HI(r~2`~3)(`~3 - 1, `/3 + 1, 2) 
H2(r/2`/3)(1 - ` /3 ,  - ` / 3 - 1 ,  2) 
H3(r/2`/3)(,/3 + 1, l - ` /3 ,  -2 )  
H4(r/2`/3)(-,/3 - l, ,/3 - 1, -2)  

V: Rotate IV by 30 ° about y axis 
Ht(r/42/3)(5 -,/3, 2+ 2`/3, 1 +,/3) 
H2(r/4,/3)(,/3 - 1, - 2 - 2 , / 3 ,  3,/3 - 1) 
H a ( r~ 4,/3)( 1 + ,/3, 2 - 2,/3, - l - 3 ,/3) 
Ha(r~4,/3)(-5 - , /3 ,  - 2  + 2,/3, 1 - , / 3 )  

VI to X: Invert I to V. 

The axes are defined as x = ( , / 3 / 2 ) ( H l + H 3 ) ,  y = ( , / 3 / 2 ) ( H t + H 4 )  , z=  
(,/3/2)(H1 +H2),  for tetrahedra I to V. The x and y axes are interchanged 
for the inverted tetrahedra VI to X, to give a fight-handed set of axes. 

The intermolecular vector is defined by the product of the intermolecular 
distance and one of the following twelve vectors: 

R, = (I, 0, 0) R7 = (I /~,3)(-  I, I, - I )  
R2 = (0, 1, 0) Re = (1 /42 )0 ,  1, 0) 
R3 = (0, 0, 1) R9 = (1/,/2)(1, 0, 1) 
1~4 = (1/43)(1, 1, 1) R,o = (1/42)(0, 1, 1) 
R 5 = (1/,/3)(1, 1, - 1 )  R,, = (43/4, 3/4, 1/2) 
f~ = (1/,/3)(-1,1,1) St2 = (3/4, -1/2, -43/4) 
A relative orientation is geflerated by taking molecule 1 at (0, 0, 0) and 
translating molecule 2 to R. This set  of ten oriented tetrahedra and 12 
intermoleeular unit vectors gives 1200 relative orientations, of which 456 
are unique. 

(b) The relative separations 

The potential surface is defined by evaluating the potential for each of the 
456 relative orientations at centre-of-mass separations of 3.5, 3.75, 4.0, 4-25, 
4.5, 4.75, 5.0 and 6.0/~, and eliminating points with U >  0.5 kJ tool - t .  This 
gives a potential-energy surface of 2966 points with a r.m.s, energy of 
0.91 kJ mo1-1. 

(c) The potential 

The potential is described by equation (1) and the following potential 
parameters, taken from Williams & Cox (1984): 

Acc  = 2439.8 kJ mol - t /~6 AHH = 136"4 kJ mol -I ,~6 
Bcc = 369743 kJ mol -I  BHH = 11971 kJ mol -t  
Ccc  = 3.60 A -1 CHH = 3"74/~-1 

ACH = ( AccAHH) 1/2 
BCH = (BccBHH) 1/2 
CcH = ½(Ccc + C.n) 

and the effective C - - H  bond length r =  1.02 ~.  

Thus, this theoretical study of model inter- 
molecular potentials for methane leads to the 
development of a potential for C H  3 and CH2 groups 
as a single anisotropic site, which is as accurate as 
current models, and confirms the practical utility of 
anisotropic site-site potentials. The possibilities for 
extending these models to give more accurate poten- 
tials for methane, and a transferable scheme of 
anisotropic site-site potentials for modelling biologi- 
cal molecules, are discussed in the final section. 

2. Comparison of model potentials for methane 

The potential surface used to compare various one- 
centred anisotropic intermolecular potentials for the 
repulsion and dispersion energy of two methane 
molecules was the isotropic atom-atom potential of 
Williams & Cox (1984), omitting the electrostatic 
interaction (which is discussed in §4). The total 
potential is assumed to be a sum of isotropic e x p - 6  
potentials between all intermolecular pairs of atomic 
sites (the H sites are displaced 0.07A, from the 
nucleus to model the shift of charge density in this 
bond), i.e. 

U(R, I2 )=  Y. B., ,exp(-C, , ,R,k)-A~, , /R,  6, (1) 
i,k = 1,5 

where sites i and k are of type ~ or K (C or H) 
respectively. The parameters in this model (Table 1) 
were derived by fitting to a wide variety of hydrocar- 
bon crystal structures. This and closely related atom- 
atom potentials have been widely used for modelling 
saturated hydrocarbons, and so this potential should 
be a reasonable approximation to the repulsion and 
dispersion contributions to the methane potential in 
the region of interest for packing problems, i.e. in the 
region of the minimum-energy well. In this potential 
scheme, the C C potential has a minimum of -0.40,  
C H of -0 .14  and H H of -0 .05 kJ mo1-1, which is a 
reasonable ratio, but nevertheless results in the C C 
interaction being smaller than the sum of either the 
C H or the H H interactions in the region of the 
minimum energy, for any orientation of two methane 
molecules. Hence, in this sense, the H-atom contribu- 
tions dominate the potential. 

2.1. The anisotropy of the potential minimum 

The anisotropy of the potential-energy surface can 
be characterized by finding the minimum energy 
- e ( O ) ,  and corresponding separation p(O), as a 
function of orientation. This was done for a set of 
456 relative orientations of two CH4 molecules, 
defined in Table 1, and the set of values for e(O)  
and p(f2) were fitted to a linear expansion in the 
appropriate orientation-dependent functions, by a 
least-squares minimization. This expansion has the 
general form 

X ( f ~  ) = X000 + 2303Z303 (,IQ) 31- x 3 3 0 Z 3 3 0 ( ~  ) 

"3t- X4o4Z4o4(  O ) "3 t- 244oZ44o  ( O ) 

+ x332Z332(  ~'~ ) + 2 3 3 4 2 3 3 4 ( ~  ) 

+ 2336z336( 0 ) (2) 
for any scalar property x of the relative orientation 
of two like tetrahedral molecules, where the Zt, t2j(g2) 
are the members of the general set of functions 
g k l  k2 t, t2~ with the appropriate symmetry (Appendix 1). 

The results in Table 2 show that the minimum 
energy and corresponding separation vary with 
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Table 2. Comparison of the expansions of the orientation dependence of various characteristics of the potential 
surface 

Coefficients in the linear expansion of  
(a) R for the energy contours (/~) (b) U for the separations (kJ moi -1) 

Coefficients of Min. p(/2) tr(O) U = 0 U = 1 kJ tool -1 - e ( O )  R = 4 A R = 5/~ 

Zooo 4.2324 3.7984 3.7007 - 1" 2615 - 0" 7497 - 0.6743 
Z3o3 0.2500 0.2497 0.2306 0"2988 1" 1643 -0"0185 
Z33 o -0.0144 -0.0148 -0.0140 -0.0286 0-0515 0-0014 
Z4o4 -0"0760 -0"0763 -0"0696 -0.0866 -0.5155 -0.0015 
Z44o -0.0020 -0.0019 -0.0016 -0.0061 0"0311 0.0006 
7,332 0.0170 0.0177 0.0169 0.0348 -0-0894 -0.0021 
Z33, * -0.0103 -0.0115 -0-0117 -0.0286 0.1747 0.0035 
Z336 -0.0522 -0.0557 -0.0512 -0.0346 -0.6836 -0-0083 

R.m.s. error 0.0203 0.0205 0.0189 0.0412 0.2650 0.0042 
R.m.s. value 4.2407 3.8073 3.7085 1.2830 1.2756 0.6740 
Max value 4-8110 4.3810 4.2360 -0.7115 4.9568 -0.6261 
(For fI I VI R 4 I VI R 4 I VI R 4 I VI R 4 I VI R4 I VI Rs) 
Min. Value 3.8080 3.3760 3-3070 -1.8726 -1.7506 -0.7002 
(For ft I VI R5 I VI R5 I VI R5 I VI R5 I VI R 5 I VIII R1) 

orientation by 1.2 kJ mol-~ and 1 A respectively, but 
can be described well by the above eight-term 
expansion, 13(12) being described better than e(O). 
The similarity of the anisotropy of p(O) and e(12) 
implies that the orientations where the molecules can 
get close to each other (small p) have deeper wells 
(large e); the global minimum energy occurs for the 
orientation with the smallest value of p, which occurs 
when two tetrahedral faces are parallel so that there 
are six equal shortest H H contacts. The coefficients 
in the expansion do not uniformly decrease in magni- 
tude with the total order (l~+12+j) of the term, 
contrary to the assumption that is usually made when 
using drastically truncated expansions. The two 
dominant anisotropic terms are Z3o3 and Z4o4 and, 
indeed, if the other five Zt, t~j terms are omitted, the 
r.m.s, error increases by less than a factor of two, to 
give a r.m.s, error of 0.0363 A (0.9% of the r.m.s. 
value) for p(12) and 0.0607 kJ mo1-1 (5%) for e(O) 
for the three-term expansion. This is an acceptable 
error in comparison with the r.m.s, errors of 0.2024 A, 
and 0.2444 kJ mol -~ which occur if only the isotropic 
terms pooo and eooo are used to approximate p(12) and 
e(O). The success of the Zt0z expansion is not surpris- 
ing, since only the H H terms in the atom-atom poten- 
tial can contribute to the other terms (Zt, t2j with 
11,/2 # 0) in the expansion. Both the C H and H H 
interactions contribute to the Zto~ and isotropic terms 
in the expansion. Thus this qualitative result can only 
be extended to weakly anisotropic systems, such as 
AH,  or non-spherical atoms. For other polyatomic 

- k  t k 2 • molecules, the equivalent terms (S~,t~ j with 11 and 12 

non zero) will be far more important, and so it would 
be inadvisable to use a one-centred potential. [This 
point was investigated empirically for C12 by Price & 
Stone (1982).] 

The Z~o~ terms only depend on the relative orienta- 
tion of the intermolecular vector R and the molecular 
axes, whereas the Z~,t2i terms with I~,12~0 also 

depend on the relative orientation of the two sets of 
molecular axes. Hence the Zz0~ terms can be thought 
of as expanding the shape of the isolated molecule. 
The contribution of either molecule to the dominant 
anisotropic term Z3o3 has a maximum when R is along 
a CH bond, and so increases p(12) along the four 
CH bonds, and reduces it in the opposite direction. 
The centrosymmetric term Z4o4 refines this picture by 
increasing p along a CH bond, and directly behind 
it, and decreasing p along the bond bisectors. 

The terms in Z~,t2j with 11, 12~0 are required to 
describe the changes in energy of a pair of molecules 
as they are rotated about R. The most important of 
these secondary terms, Z336, is the orientation depen- 
dence of the interaction of the first non-vanishing 
total multipole moment for tetrahedral molecules, the 
octupole component [Oxy z o r  1232s as defined by Price, 
Stone & Alderton (1984)]. Hence a consideration of 
the shape, and not just the symmetry, of an AH,  
molecule or non-spherical atom should give guidance 
as to the dominant anisotropic terms in the potential 
and, unless the molecular fragment is charged, these 
will not be the terms in the central multipole 
expansion of the electrostatic energy. 

2.2. Characterization of the potential surface 

The choice of p(O) and e(O) to characterize the 
anisotropy of the potential surface is an obvious one, 
but nevertheless needs investigation. In Table 2, the 
expansion of p(12) is compared with the expansions 
for other energy contours of the surface, namely the 
zero-potential o-, [ U(tr) = 0], and the U = 1 kJ mo1-1 
contour. The anisotropies of these characteristic 
separations are essentially the same, emphasizing the 
conclusion that the shape terms ZloI dominate the 
radial scale of the potential. 

In contrast, the variation of the energy with orienta- 
tion for fixed centre-of-mass separations R = 4.0 and 
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R = 5 . 0 / ~  and the minimum energy e(O) differ 
grossly, and are relatively poorly described by an 
eight-term expansion. Although Z3o3 dominates the 
anisotropy, the higher-order terms become increas- 
ingly important at smaller separations. This occurs 
becahse, although the anisotropy of the repulsion and 
dispersion are defined by the same assumption (i.e. 
the isotropic atom-atom model), the different radial 
forms lead to different anisotropies. The repulsive 
wall is extremely anisotropic, so that even at 4/~, 
which is well within the range of minimum-energy 
separations, a potential of the form U ( R , O ) =  
cP(l2)f(R) is clearly inadequate. The required 
anisotropy could be produced with potentials of the 
form U(R, O ) = f [ R ,  p(I2)], such as U,¢p= 
A exp { - a i r  -p(12)]}, because the exponential term 
produces powers of Z3o3 etc., which correspond to 
higher terms in the anisotropy of the potential. Hence 
it is more useful, and compact, to discuss the 
anisotropy of a potential-energy surface in terms of 
its radial anisotropy, i.e. as an energy-contour hyper- 
surface, than in terms of energy variations at fixed R. 

2.3. Anisotropic one-centred exp-6 potentials for 
methane 

The analysis of the anisotropy of the atom-atom 
potential for methane can be used to design model 
intermolecular potentials which are functions of the 
carbon-carbon separation R and the orientation- 
dependent functions Zt,~j(I2), seeking effective rep- 
resentations of the potential-energy surface. One 
obvious approach is to use the expansions for the 
well depth e(12) and corresponding separation p(O) 
in place of e and p in the isotropic exp-  6 potential; 

Us¢,le(R,/2)= e(O)(1-6/  a) -t 

x {(6/a) exp ( a [ 1 - R / p ( a ) ] )  

-[p(O)/R]6}. (3) 

This potential has its minimum-energy contour 
- e ( O )  at p(O), and includes one additional param- 
eter a which has to be determined. The centre-of- 
mass separation R is scaled by the radial aniso- 
tropy p(O) and, since it is in the form U =  
~(12)f[R/s(O)], it is an example of a Comer (1948) 
potential. The Kihara (1978) and Gaussian Overlap 
(Berne & Pechukas, 1972) are also examples of Cor- 
ner potentials, with specific models for 4)(0) and 
s(I2), which have been examined by Walmsley (1977). 
However, as Stone (1979) has pointed out, the Comer 
potential models are unsatisfactory in that where 
s(,O) is large, the potential is softer, i.e. the force is 
inversely proportional to s(O). Stone (1979) pro- 
posed an alternative form U =  ¢p(12)f[R-s(I2)], 
where the reduced shape of the potential curve 
( U~ ~) is the same for all orientations, but the radial 
scale is shifted by s(O). A shifted version of the 

e x p - 6  potential can be defined as 

U~h,ft(R, O ) =  e(,O)(apo- 6)-'  

(6 exp { - a [  R - p (~  ) ]} 

_txp7/[R-p(O)+ po]6), (4) 

which also has a minimum energy - e ( O )  at p(I2). 
Here Po is taken as the isotropic component of p(I/) ,  
so the model has only one adjustable parameter a, 
but #o could be taken as an additional parameter. 

These model potentials automatically fit the surface 
at the minimum-energy contour, within the error 
associated with fitting .e(O) and p(12), but will give 
different extrapolations away from this contour. The 
models can be compared with the potential-energy 
surface grid, defined in Table 1, which is designed to 
sample the potential in the well region. The value of 
the unknown potential parameter a was derived for 
each model by least-squares fitting to the 2966 points 
on the potential-energy surface. The r.m.s, errors in 
reproducing the surface are given in Table 3. This 
shows that both the shifted and the scaled form of 
U(R, O) give a reasonable fit to the surface, with the 
shifted model (r.m.s. error 0.06 kJ mo1-1) being some- 
what better than the scaled model (r.m.s. error 
0.08 kJ mol-1). The simpler 'shape only' expansions 
for e(O) and p(O), which contain only the three 
terms in Ztot, also give an acceptable fit to the surface, 
with r.m.s, errors of approximately 0.1 kJ tool-l, com- 
pared with 0.34 kJ mo1-1 for the isotropic potential 
using eooo and pooo. This suggests that a simple model 
potential for small molecules or fragments can be 
produced by using the molecular shape to determine 
the appropriate ~q~'o~ to model p(O) and e(O) within 
the shifted potential (4). A van der Waals surface 
could be used to estimate the anisotropic parameters, 
assuming ek~--p k°, leaving only po and eo to be 
determined by fitting to experimental data such as 
virial coefficients. 

2.4. Other potential models 

The e x p - 6  potentials provide a useful extrapola- 
tion of a potential surface away from the minimum- 
energy contour, but this extrapolation is very inflex- 
ible and, as the same parameters are used to describe 
the repulsion and dispersion contributions, it cannot 
be very accurate. Hence this type of model potential 
is of limited usefulness in deriving a potential by 
fitting to a set of experimental results or ab initio 
points, and other types of model potential may be 
able to fit the data better, with fewer parameters, and 
still give a reasonable extrapolation of the potential 
to the regions not sampled by the data being fitted. 
The choice of model potential is the major factor in 
determining the accuracy of the fitted potential, and 
hence the reliability of the properties calculated from 
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Table 3. Comparison of model potential surfaces 

( a )  A n i s o t r o p i c  e x t e n s i o n s  o f  t h e  e x p - 6  p o t e n t i a l  

S c a l e d  p o t e n t i a l s  ( e q u a t i o n  3)  

E x p a n s i o n  R . m . s .  e r r o r  

o f f ( O )  ( k J  m o l  - t )  O p t i m u m  as~al e 

Full  e x p a n s i o n  0.081 14.9374 
Ztot e x p a n s i o n  0.104 14.5975 
Isot ropic*  0 .344 9-3367 

( b )  O t h e r  m o d e l  p o t e n t i a l s  

R.m.s. error 
(kJ mol -l) 

I so t rop ic  e x p - 6  0.307 t~ = 9.3468 
L inea r  e x p a n s i o n  ( equa t i on  5) 
All Uttz2j the  s ame  0.261 a = 9.4033 

eooo = 1.0742 
e4o4 = 0"0859 
e334 = 0.0118 
Pooo = 4.3316 
P3o3 = 2.5878 
Pooo = 4.3502 
P3o3 = 2.2830 
P4o4 = 3" 1272 

Two t e rm fixed t~ = 9.35 0.217 

Three  t e rm fixed a = 9"35 0.203 

Shifted potentials (equation 4) 
R.m.s. error  Optimum Otshif t 
(kJ mol -t) (/~-1) 

0.060 3"6832 
0.094 3.5771 
0.346 1"011 

P o t e n t i a l  p a r a m e t e r s  

(A,,  k J  t o o l  -1 etc.) 
p = 4 . 1 6 9 4  

p = 4.1660 
e3o 3 = - 0 . 2 6 9 0  
e44o = 0.0117 
e336 = 0.0532 
eooo = 1"0461 
e3o3 = - 2 . 3 4 4 2  
eooo = 1"0489 
e3o3 = - 5 " 2 7 9 4  
e4o4 = 0.3238 

Type  U ( R ,  O )  = exp  { - a ( O ) [ R  - p ( g ~ ) ] } -  A/R 6 ( equa t ion  6) 
Two t e rm p ( O )  0.161 a = 3.1431 A = 1.221 x 104 

Pooo = 4.2243 P3o3 = 0.1026 
Three  t e rm p(g2)  0.096 a = 3.4930 A = 1.1482 x 104 

#ooo = 4.1747 P3o3 = 0.1292 
Three  te rm a ( O )  0.208 # = 4.4161 A = 1.5849 x 104 

aoo o = 2-6693 a3o 3 = 0.3457 

e = 1.0894 

e33 o = 0"0135 
e332 = - 0 . 0 2 8 8  

P4o4 = - 0 . 0 4 0 8  

a4o4 = - 0 . 1 3 9 7  

* The  scaled a n d  sh i f ted  po ten t i a l s  are  equ iva l en t  w h e n  e a n d  p are i so t ropic ,  wi th  as~le  = pOtshif t . However ,  the  fit is 
so p o o r  tha t  the  two numer i ca l  m i n i m i z a t i o n s  give different  po ten t ia l s  wi th  vi r tual ly  the  same  r.m.s, error.  

it, and so it is important to consider a variety of 
models in order to obtain the best one-centred rep- 
resentation of the methane potential. The choice of 
model potential has often been determined by theo- 
retical or computational considerations, and so 
different types of model potentials have been used 
for different types of studies. We can test whether the 
different approaches generate realistic model poten- 
tials, by fitting the trial model potential to the assumed 
surface, in order to assess the flexibility of the model 
and its efficiency in the use of adjustable parameters. 
A model which cannot fit the assumed potential sur- 
face significantly better than an isotropic potential 
(r.m.s. error 0.3 kJ tool -1) is very unlikely to be cap- 
able of giving a good representation of the actual 
potential. On the other hand, there is no point in 
constructing an elaborate model to reproduce the 
surface exactly, as a model which is reasonably similar 
to the assumed potential could be a better approxima- 
tion to the true potential. 

Linear expansion potentials. The form of model 
potential required for scattering calculations which 
study rotational-energy transfer is a linear expansion 
in the eigenfunctions of the total angular momentum 
(Pack, 1974) of the general form 

1" l'klk2[ D'~ ~klk2[ t"}'~ U(R, O ) = E  ~, t,z2j~--J~,,,,~j~°J. (5) 

If the radial part of the potential is assumed to be 
independent of l~lEj, for example the e x p - 6  poten- 
tial, then the corresponding model potential for 

methane is 

U ( R ,  ~ ) = Z  et, t z jZ t ,  t z j ( f ' ~ ) ( 1 - 6 / a )  - '  

x {(6/a)  exp [ a ( 1 -  R/p) ] - (p /R)6} .  

Table 3 shows that even a ten-parameter model of 
this obsolete form is incapable of giving a reasonable 
fit to the potential. This follows from the large vari- 
ation in the anisotropy with R, which was discussed 
in § 2.2. The changes in the anisotropy with R can, 
in principle, be modelled by allowing the parameters 
in Ut, t2j (e.g. a and p) to differ for different 11 lzj. Since 
many terms in the expansion are required in order to 
represent the repulsive wall accurately (see the 
expansion of the potential at R = 4/~ in Table 2), 
such a model would have an unmanageable number 
of parameters. However, a drastically truncated 
expansion is often used for scattering calculations 
(e.g. Buck, Schleusener, Malik & Secrest, 1981; Buck, 
Huisken, Kohlhase, Otten & Schaefer, 1983), with 
the justification that the important features in the 
scattering result from the lowest-order terms in the 
potential. This type of potential was examined by 
fitting both a two- and a three-term-expansion model 
potential to the isotropic atom-atom potential sur- 
face, optimizing the values of e~ot and ptot (the a 
exponent was held constant because of the high corre- 
lation of the potential parameters). Both potentials 
reproduced the surface relatively badly (Table 3), 
showing that this form of potential is unsuitable for 
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studies of properties which depend on the full poten- 
tial surface rather than just specific terms in the linear 
expansion. The coefficients in U303 changed sig- 
nificantly when the term in Z4o4 was added to the 
model potential. Thus, when a truncated expansion 
is fitted to a potential-energy surface, the fitted 
u kz k2[  D t,/2j~,-J will partially compensate for the omitted 
higher-order terms, resulting in significant errors in 

• • k k 2 the determmatzon of Ut,'t2j(R). Thus, rather than 
fitting a linear potential directly it could be more 
accurate to derive it by fitting another model to the 
experimental or ab initio data, and then extracting 
the required terms by numerical integration. 

Anisotropic potentials for crystal-structure analysis. 
In many simulations, such as crystal-packing analy- 
ses, the property being studied is insensitive to the 
anisotropy of the long-range dispersion forces. It is 
particularly convenient if the dispersion forces are 
isotropic, as this enables their long-range energy con- 
tribution to be evaluated very efficiently, using, for 
example, the Ewald-Bertaut-Williams method (Wil- 
liams, 1971), which is included in programs such as 
WMIN (Busing, 1981). It is a reasonable approxima- 
tion to assume that the dispersion is isotropic, as the 
atom-atom potential surface is only weakly 
anisotropic by R = 5/~ (Table 2), and the anisotropic 
repulsion model can partially absorb the anisotropy 
of the dispersion forces in the well region. Hence, 
models of the general form 

U(R, g 2 ) = e x p { - a ( O ) [ R - p ( O ) ] } - A / R  6, (6) 

where a(O) and p(O) are various short linear 
expansions in Ztot, were fitted to the potential 
surface. [If a is independent of orientation, this 
form is exactly equivalent to U(R, 12) = 
crP(12)exp{-a[R-p' (O)]}-A/R 6 (Price & Stone, 
1980).] This general model was used to derive 
anisotropic site-site potentials for C12 and the azaben- 
zene molecules by crystal structure analysis (Price & 
Stone, 1982, 1984). 

A potential of this form, with p(O)=pooo+ 
P303Z303(~"~) -~- Pno4Z404(J'~) and a(O)  = a, gave one of 
the best fits to the potential surface, comparable to 
that obtained with the shape-only (Zt0~ expansion) 
shifted e x p - 6  potential, using fewer parameters• 
Thus, we have obtained a good one-centred potential 
for methane which is fortunately in a particularly 
convenient form for crystal structure analysis. This 
potential is used in the next section to develop 
anisotropic carbon site potentials for saturated hydro- 
carbons. 

A similar potential, which uses the anisotropy to 
scale the effective separation, instead of shifting the 
repulsive wall, by making a orientation dependent 
instead of p, gives a much poorer fit to the surface. 
This, along with the results from the anisotropic 
e x p - 6  potentials (§2.3), confirms the conclusion 

from a study of an ab initio H 2 H2 potential-energy 
surface (Price & Stone, 1980) that 'shifted' potential 
models are superior to the 'scaled' Comer potentials• 

The use of orientation-dependent parameters 
within the potential, such as in (6), is clearly a much 
more effective approach to modelling the surface than 
using a linear expansion of the orientation depen- 
dence (5), even for this highly spherical molecule. 
The general form of repulsive potential in (6), with 
both the a and 0 parameters being orientation depen- 
dent, enables the potential to be both shifted and 
scaled with changes in orientation. Such model poten- 
tials will be sufficiently flexible to represent the 
anisotropy of the repulsive wall very accurately when 
we are able to determine the intermolecular potentials 
of polyatomic molecules with anything approaching 
the accuracy which has been achieved for monatomics 
such as argon (Maitland, Rigby, Smith & Wakeham, 
1981). However, the next section shows that the 
simple five-parameter shifted potential is adequate 
for modelling the crystal packing of saturated hydro- 
carbons. 

3. Anisotropic carbon site-site potentials for saturated 
hydrocarbons 

A typical saturated hydrocarbon such as hexane, or 
a fragment such as an ethyl group, can be approxi- 
mated as a set of rigidly bonded methane molecules, 
with the hydrogens along the C-C bonds removed. 
The repulsion potential for methane should be a 
reasonable approximation to the intermolecular 
repulsion of a CH2 o r  C H  3 group within a molecule, 
because the repulsion potential in the region of the 
C-C bond, which is the region where the methane 
molecule differs substantially from the fragments, 
cannot be sampled in any simulation because of the 
presence of the bonded molecular fragment. The 
isotropic dispersion coefficient for CH4 is too large 
for a CH3 o r  C H  2 group, as the number of electrons 
contributing to this long-range effect differs. An esti- 
mate of the appropriate ratio may be obtained from 
the dispersion coefficients in the atom-atom model 
at separations which are large compared with the CH 
bond length. The potential of Williams & Cox (1984; 
and Table 1) gives these long-range - R-6 coefficients 
a s  

C~s°(CH4,CH4) =Acc  + BAcH + 16AHH 

= 9237 kJ mo1-1 A 6, 

C~s°(CH3,CH3) = Acc+ 6AcH + 9AHH 

= 7129 kJ mo1-1 A6, 
iso 

C 6 ( C H E , C H 2 )  = Acc + 4 A c H  + 4 A H H  

= 5293 kJ mo1-1 A6. 

The effective isotropic - R  -6 coefficient, A, which was 
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fitted to the surface is approximately 25 % larger than 
iso C6 (CH4,CH4), because it is also partially modelling 

the extra dispersion in R-", n > 6, produced by the 
anisotropy of the atom-atom surface. Hence the fitted 
A coefficient should be scaled by the ratio of the 

/~ i so  values of the ,--6 to obtain estimates for the effective 
dispersion coefficients for CH3 and CH2. 

Thus, we may define a carbon site potential for 
saturated hydrocarbon fragments 

U(R, ~ ) =  E exp(--°t[Rik--Pooo--P3o3Z3o3(flik) 
C sites 

- P4o4Z4o4(~-~ik )]} -  a~aK/  Ri6k, ( 7 )  

where the repulsion parameters are taken directly 
from Table 3, and the dispersion-energy parameters, 

94.13 (kJ mo1-1 A6) 1/2 and acH2=81"11 
aCH3= ' /~6)1/2, 
(kJ mol- '  are obtained by the appropriate 
scaling of the fitted coefficient A. 

This potential, derived purely from an analysis of 
the isotropic atom-atom potential for methane, can 
be tested by using it to predict the crystal structures 
of typical saturated hydrocarbons. The calculations 
were performed using the crystal structure analysis 
program W M I N  (Busing, 1981), with the addition 
of two short subroutines to calculate the orientation- 
dependent functions. One subroutine, which is only 
called when the crystal structure is changed, calcu- 
lates and stores the x, y and z vectors defining the 
orientation of each tetrahedral carbon atom, using a 
carefully ordered list of the numbers of the bonded 
carbon and hydrogen atoms (the connection table). 
The z axis is defined as the sum of unit vectors along 
the backbone bonds to atoms 1 and 2 (see Fig. 1), 
the x axis by the sum of unit bond vectors to atoms 
1 and 3, followed by Schmidt orthogonalization to 
give a vector strictly perpendicular to z, and the y 
axis is given by the vector product y = z x x. This 
procedure gives a good positioning of the axes for 
CH2 and CH 3 groups, which are rarely exactly 
tetrahedral. If the molecular unit deviates sig- 
nificantly from tetrahedral, for example in cubane, 
then this potential is not appropriate. However, more 
frequently, the positions of the hydrogen atoms are 
not determined, and this approach has the advantage 
of only requiring the input of the positions of one or 

2 

Fig.  1. D e f i n i t i o n  o f  axe s  fo r  a t e t r a h e d r a l  m o l e c u l e .  

Table 4. Crystal structure predictions from an 
anisotropic carbon potential 

n- P e n t a n e  n- H e x a n e  n - O c t a n e  
Pbcn P i  P i  

Exp. Error Exp. Error Exp. Error 

a (/~,) 4.100 0.186 4.17 0.12 4.22 0.08 
b (A) 9.076 -0 .026 4.70 -0-07 4.79 -0 .15  
c (/~,) 14.859 0.090 8.57 0.09 11.02 0.01 
a (o) m m 96.6 -0 .9  94.7 - 0 . 6  
fl (o) - -  - -  87.2 1"6 84"3 0"1 
3' (°) - -  - -  105"0 -1"6 105"8 -1"8 
AO x (°) - -  -0 .07  0-00 
AO r (°) -1 .15  0.76 -0 .53 
~Oz (°) -- -1.28 -0.44 
Aty (A) -0.0007 - -  - -  
Ut (kJ tool - l )  -41 .5  2.8 -52 .6  5.3 -66 .4  3.8 

The energy minimizations were carded  out within the observed space group 
starting from the experimental results, using the program WMIN (Busing, 
1981). The structural parameters AOi and Ati give the symmetry-allowed 
rotations and translations of the rigid molecules from their experimental 
positions, defined relative to the crystal axes (as in WMIN', Busing, 1981). 
A positive error in the lattice parameters indicates that the predicted value 
is larger than the experimental value. The experimental structures for pentane 
and octane were taken from the work of Mathisen, Norman & Pedersen 
(1967), and the structure of hexane from Norman & Mathisen (1961). The 
hydrogen-atom coordinates are not fully determined for hexane, so the 
tetrahedral axes were defined using dummy sites. The lattice energies, Us, 
were taken from Williams & Cox (1984). 

two dummy hydrogen atoms in the expected direc- 
tions of the C-H bonds. It is crucial that the atoms 
1, 2, 3 are chosen so that they define a right-handed 
set of axes with an atom in the positive quadrant, as 
the interchange of two atoms would model the inver- 
ted molecular fragment. The potential can then be 
evaluated for every carbon-carbon intermolecular 
interaction, using an extra subroutine which evaluates 
the cosine of the angle between two vectors (R and 
x, y or z for either site), to obtain x~.R etc. for 
substitution into the simple formulae for Zao3(f~) and 
Z4o4(I~) which are given in Appendix 1. 

These calculations, using orientation-dependent 
potentials, are very efficient, because the cost of calcu- 
lating the Zt,12j(f~) is a small price to pay for the 
omission of the hydrogen sites. The reduction in the 
number of intersite vectors is large; evaluating the 
intermolecular energy of a pair of hexane molecules 
requires summing over 400 interactions for the atom- 
atom model, compared with 36 for the anisotropic 
carbon model. Thus, the structure-prediction calcula- 
tions for this potential required only a quarter to a 
third of the computer time needed for the isotropic 
atom-atom model. 

The structures predicted by this anisotropic site- 
site potential for pentane, hexane and octane (Table 
4) are in good agreement with the experimental crystal 
structures, with a r.m.s, error of only 2.3% in the 
lattice parameters. This is as accurate as the original 
isotropic atom-atom model, and is about as good as 
can be reasonably expected for these temperature- 
independent calculations. The predicted lattice ener- 
gies are also reasonable, particularly considering the 
ad hoc method used to estimate the dispersion 
coefficients. 
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The hydrogen atoms play a major role in determin- 
ing the packing of saturated hydrocarbons, allowing 
the close approach (<3.65 A) of the terminal C H  3 
groups in octane and hexane, where the molecules 
are parallel, and giving larger separations (->3.9/~) 
in the very different and unique structure adopted by 
pentane (Norman & Mathisen, 1972). Hence, it is not 
surprising that isotropic CH3 and CH2 potentials, 
whether fitted to the potential-energy surface or the 
crystal structures, cannot give even qualitatively cor- 
rect predictions for the crystal structures. However, 
the packing effects of the hydrogen atoms can be 
adequately and efficiently modelled by this simple 
anisotropic carbon potential. 

4. Discussion 

This paper develops the use of orientation-dependent 
model intermolecular pair potentials for saturated 
hydrocarbons. The results have major implications 
for both the development of highly accurate potentials 
for methane, for use in chemical-physics studies, and 
also for the development of transferable anisotropic 
carbon site-site potentials to model saturated hydro- 
carbon fragments in biological molecules. 

Although reliable intermolecular potentials for 
small polyatomics are urgently needed for a wide 
range of theoretical studies of their microscopic and 
macroscopic properties, there is, as yet, no recipe for 
obtaining them, although there has been considerable 
progress in developing both ab initio methods and 
the analysis of experimental data to obtain informa- 
tion on the potential. This paper mainly addresses 
the problem of what type of model potentials have 
the flexibility to enable them to describe the actual 
potential, an important preliminary, as there is no 
point in expending considerable effort to obtain 
accurate ab initio or experimental results, and then 
analysing them in terms of a model potential which 
is incapable of describing the actual surface. In par- 
ticular, § 2.1 indicates that one-centred anisotropic 
potentials will only be appropriate for mildly 
anisotropic polyatomic molecules, such as AHn, and 
§ 2.3 showed that the choice of model is important; 
the shifted models, U(R, O) = ~ ( O ) f [ R  - s(O)], are 
superior to the scaled Corner models, U(R, I2)= 
@ ( O ) f [ R / s ( O ) ] ,  and a linear expansion of the 
orientation dependence, U(R, 12)= @(O)f (R) ,  is a 
very poor model for the potential. 

This study analyses a potential surface for CH4 
which assumes that the molecule is a superposition 
of spherical charge distributions. Since the atomic 
electron density rearranges on bond formation, the 
actual potential probably has a less 'bumpy' repulsive 
wall than the assumed model. Hence the one-centred 
anisotropic potentials may model the actual potential 
better than they model the assumed surface. The 
electrostatic contribution to the potential is neglected 

in this study, since saturated hydrocarbons are gen- 
erally considered to be non-polar, and the point- 
charge model used by Williams & Starr (1977) gives 
a negligible (< 0.5 kJ mo1-1) contribution to the lattice 
energy of the three saturated hydrocarbons. However, 
the electrostatic contribution to the methane potential 
requires careful consideration, since the octupole- 
octupole interaction has a maximum (destabilizing) 
energy for the dimer orientation predicted by the 
isotropic atom-atom potential. An electrostatic con- 
tribution can be added to the isotropic atom-atom 
potential, by using either a central octupole moment 
Oxyz = v/-~/6Q32s = 6.17 x 10 -50 C m 3 [from a SCF-CI 
calculation by Amos (1979)], or the corresponding 
point-charge model, which has positive charges of 
0.189 e on the hydrogen-interaction sites. These two 
models give different predictions for the dimer struc- 
ture, since the point-charge model generates higher 
multipole interactions, and so destabilizes the repul- 
sion-dispersion minimum-energy orientation con- 
siderably less than the central octupole model. Thus, 
the electrostatic contribution, although small, 
modifies the anisotropy of the potential well, and so 
needs to be modelled accurately. Since the point- 
charge model is a gross approximation to the actual 
charge distribution in methane, and so will be a very 
poor model for the higher multipole moments, a more 
detailed knowledge of the electron distribution in 
methane is required. Ab initio methods can be used 
to calculate the long-range isotropic and anisotropic 
dispersion coefficients, which would improve the 
model of this contribution to the potential. The 
subtleties of the anisotropy of the potential for 
methane are manifest in the complexity of the orienta- 
tional ordering phase transitions in CHnD4-n (Press 
& Hiiller, 1974; Prager, Press & Heidemann, 1981), 
and a more accurate potential is needed for the analy- 
sis of the experimental data on these phases, but the 
situation is complicated by the possibility of meta- 
stable structures and by quantum-mechanical effects. 

This work uses a simple anisotropic site-site carbon 
potential to predict the crystal structures of pentane, 
hexane and octane, with the same accuracy as and 
greater efficiency than the original isotropic atom- 
atom potential. Since these were the only crystal 
structures containing only unstrained C H  3 and CH2 
groups which were used to derive and test the estab- 
lished isotropic atom-atom potential (Williams & 
Starr, 1977; Williams & Cox, 1984), our potential is 
as well proven for these functional groups as the 
isotropic potential. This paper is not concerned with 
unsaturated hydrocarbon fragments, because they 
require a different type of anisotropy to represent the 
bonded hydrogen atoms. The isotropic atom-atom 
potential is simpler in that it is used for all hydrocar- 
bons, but it is inflexible, and so the accuracy of this 
model is limited. In contrast, the anisotropic poten- 
tials have the great advantage that they are able to 
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model the non-sphericity of the bonding electron 
density, and so can be adapted for different chemical 
environments. X3ince the intermolecular potential con- 
tribution from any site is primarily determined by the 
local electron density, we can only confidently trans- 
fer site-site potentials between sites which are chemi- 
cally equivalent, i.e. have essentially the same local 
electron distribution. The zr-electron density of the 
aromatic hydrocarbons gives rise to strong electro- 
static quadrupolar interactions which play a major 
role in determining the molecular packing, and this 
effect is only crudely modelled by charges on the C 
and H sites in the isotropic atom-atom potential 
(Price, 1985). Hence, we expect that anisotropic site- 
site potentials, which take account of the differences 
in local bonding environment between saturated, aro- 
matic and strained hydrocarbons (e.g. cubane), 
should be more accurately transferable than any 
averaged isotropic potential. 

In the original derivation of the isotropic atom- 
atom potential, the molecules were assumed to be 
rigid and this approximation was used in this work, 
but is not necessary. The anisotropic carbon poten- 
tials could be used to represent the van der Waals 
forces in molecular-mechanics predictions of 
molecular conformations and packing. The bending, 
stretching and torsion about the backbone bonds 
(C-C-C etc.) could be modelled in the usual manner 
(Burkert & Allinger, 1982), the only difference being 
that the anisotropic tetrahedral carbon potential 
would not allow the modelling of deformations within 
the C H  3 o r  CH2  units. However, in most studies, 
particularly on larger molecules, such deformations 
are not important, and the saving of computer time 
in being able to model a methyl group by one site, 
and yet reproduce its anisotropy, makes this type of 
potential particularly advantageous. 

It must be emphasized that this work only demon- 
strates the feasibility of modelling C H  3 and CH2 units 
by a one-centred potential, at current levels of 
accuracy. The method of obtaining the potential is 
extremely derivative, and although the ability to pre- 
dict the observed crystal structure is a useful test of 
a potential, it only samples a very limited number of 
relative orientations. Thus, crystal structure analysis 
leaves much to be desired as a means of establishing 
intermolecular potentials. The next stage is to develop 
a more reliable general method of determining the 
appropriate potential model and parameters for 
different molecular units, via an examination of the 
shape of the electron density distribution around each 
site, and the analysis of experimental sources of infor- 
mation about intermolecular forces. 

The overall conclusion from this work, and the 
azabenzene and chlorine studies, is that it is possible 
to develop a new simple transferable scheme for the 
intermolecular potentials of organic molecules, using 
anisotropic functions, and fewer interaction sites than 

atoms. The new approach has the compelling attrac- 
tion that it discards the gross approximation that the 
potential is composed of spherical atom-atom poten- 
tials, and it has the flexibility to be extended to reflect 
our increasing knowledge of intermolecular forces. 
Hence, the next generation of model potentials for 
organic molecules should be more accurate than those 
currently available, increasing the realism of 
molecular simulations. 

I wish to thank Dr A. J. Stone for useful discussions 
on this work, the Science and Engineering Research 
Council for financial support, and the Royal Society 
for the award of a 1983 University Research Fel- 
lowship. 

APPENDIX 1 

Expansion functions for the orientation dependence of 
any scalar property of two identical tetrahedral 

molecules 

A general definition of a complete set of expansion 
functions for the orientation dependence of any scalar 
property of two molecules of arbitrary shape has been 
given by Stone (1978): 

s k l k 2 { o ' ~  
1112j\ "~ / 

= itl--12--J 

X D l ~ a k ,  (ff~l)* D/m2 2k2 ( ~'-~2)* OJmo( ~'~ 12)* (m/11 
m2 

where the Dtmk(g'2) a re  Wigner rotation matrices, the 
term in brackets is a Wigner 3j coupling coefficient 
(Brink & Satchler, 1968) and O1, 02 and O12 define 
the orientations respectively of the two molecules and 
the intermolecular vector R = R2 - R1, with respect to 
an arbitrary space-fixed axis system. [We have used 
12 to denote the set of orientations (O~, 02, g212).] 
Summation over m~, m2 and m is implied. This 
orthogonal set of S functions has many convenient 
properties for describing bimolecular potentials, 
being easy to evaluate and to differentiate to give the 
associated forces and torques analytically (Stone, 
1978). These functions arise naturally in the perturba- 
tion expansion of the energy of a pair of molecules 
at long range, which is expressed in terms of the 
permanent electrostatic multipole moments, static 
and dynamic polarizabilities of the individual 
molecules (Stone & Tough, 1984). This Appendix is 
only concerned with deriving some of the members 
of this set of functions which are appropriate for 
tetrahedral molecules, extending the analysis by 
Stone (1978), and expressing the functions in a form 
which is useful for implementation in crystal-struc- 
ture-analysis programs, as described in § 3. 

The only S functions which can appear in the 
description of a scalar property of a pair of molecules 
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are those combinations of the Drink(O) which are 
symmetric under the symmetry groups of both 
molecules, and of the combined system. In order to 
take account of the symmetry of the isolated 
molecules, we note that, under molecular symmetry 
operations, D~k(~"~ ) transforms in the same way as 
the spherical harmonic YZk(O) (Brink & Satchler, 
1968), so we can use standard group-theoretical 
methods, or published tables (e.g. Stone, 1979; 
Watanabe, 1966) to determine the allowed values of 
la, kl, 12 and k2. The fourfold screw axis of a tetrahe- 
dral molecule implies that l + k + k / 2  is even 
(Watanabe, 1966), and so the allowed combinations 
of l~ with k~, and also 12 with k2, are l = 0 k = 0, l -- 3 
k = ±2, l = 4 k = 0, ±4 etc. The twofold rotation axis 

• . - k l k  2 C2(x) implies that the coefficients of St, hi are related 
to those of S~,~) by a factor of (-)~,. Secondly, we 
need to consider the properties of the entire system. 
Since we only will be considering properties which 
are invariant under inversion, l~+12+j must be 
even (Stone, 1978), and we can define a general 
normalization 

gklk2__.~klk2( ~ 12 j ) - l ,  
1112j - -  "" I112j 0 0 

which gives the useful interpretive property that the 
• - k  k • 

magnitude of Si]~t~ ~ is less than or equal to unity (Stone 
& Tough, 1984). Since the molecules are identical, 

• - - k t k  2 - - k 2 k  l the coefficients of S t t, and S t t j must be equal. Thus 
• 1 2 /  2 1  

the expansion functions generated by considering 11, 
- -  - - 2 0  - - - 2 0  - - 0 2  - - 0 - 2  

12 = 0,3 are Sooo = 1, ($303 - $303 + S033- S033 ), and 
- - 2 2  ($33j S;~2_ e2-2~_ e-2-2~ - ~,33j - ~,33~ J for j = 0,2,4,6. The sym- 

metry properties of a tetrahedral molecule transform 
I"4o and Y4,4 between each other, and so there is only 

0 0  4O one independent term arising from `{o04 and (,{404+ 
,{4~0 + `{o4 + `{oF~), which can be obtained by project- 
ing out the totally symmetric component under the 
molecular symmetry operators of both molecules 
from either expression. Similarly, there is only one 
• . . - - k t k  2 • independent term arising from $44 o . These eight 
terms give all the terms in the expansion with l~,/2 -< 3 
and all terms of total rank up to eight, and were 
sufficient for the purposes of this work. Naturally 
there are further members, based on `{44j, j -  2,4,6,8, 
and -20 $343 etc., as well as terms involving higher values 
of ll and/2.  

The advantage of this general definition is that we 
may choose an axis system which is convenient for 
the application• For many calculations which use 
intermolecular potentials, including crystal structure 
analysis, it is convenient to describe the relative 
orientation of the molecules in terms of the unit 

A 

intermolecular vector R, and the unit vectors x, y, z, 
which define the molecule fixed axes. (The axis vec- 
tors can be calculated from the positions of the atoms 
bonded to the origin atom, as described in § 3.) Then 

~ '00  ^ - - 0 0  Slo~ z~ R, R and -00 S o l  1 - - Z 2  • • • = • = Sllo=Zl z2 The for- 

mulae for non-zero values of kl, k2 can be derived 
using shift operators, and the higher-rank S functions 
can be derived hierarchically, using the formulae for 
the products of two S functions. These methods of 
deriving the `{/'tk, ~ in terms of the scalar products of 
unit vectors are'~emonstrated in some detail by Price, 
Stone & Alderton (1984), where they are used to 
derive explicit formulae for the electrostatic energy, 
forces and torques for a pair of molecules of any 
symmetry• 

The  relationships between the direction cosines 
[(x~. R)2+ (y~. R)2+ (z~. R)2 = 1, x~ .y2= (z~ .x2)x 
(y~. z2)-  (y, .  x2)(zl, z2) etc.] lead to a plurality of 
equivalent expressions for the higher expansion func- 
tions. The formulae are given here in the form which 
shows explicitly the equivalence of the three axes for 
a tetrahedron, which can be obtained from any 
expression, derived from a set of product formulae, 
by projecting out the totally symmetric component, 

• A 
using the operator P -= Pm~,~ ~ n' Pmol 2 "  

Hence, we derive the following formulae for the 
independent symmetry-adapted expansion functions 
for the scalar properties of two tetrahedral molecules 
a s "  

- -  S o 0 0  Zooo(n) -oo 

=1 

Z3o3(a) (3vff-0/10)i(g~°3 --20 -02 -_- - -  S 3 0 3  ÷ S 0 3 3 -  g O ; 2 )  

= 343[(x,. fi)(y,, fi)(z,, fi) 

--(X2" R)(y2. P-)(z2. R)] 

z 3 3 0 ( n )  ~ 2 2  ~ 2 - 2  - - = ( S . o -  S~o - s G  ~ + s G 2 )  

= - 1 2 P [ ( x , .  x2)(y,, y2)(z,, z2)] 

Z4o4(n) (12/7)P[ -°° -oo = $404 + S044] 
~ 4 0  - - 0 - 4  oc p[ S404 + S404° + -04 So44 + So44 ] 

= ½{ 5[ (x , .  R)4 + (y, .  ~)4 + (z , .  R)4 + (x2. fi)4 

+ (Y2. ~)4+ (z2. ~)4]-6} 

Z44o([2) = (12/7)P[ S~o] 
- - 4 0  oc P[$440 + S~40 ° + -04 S~o + ~q°-o4] 

oc p [  ~ 0  + S~o~-4 + ~ , ~  + ~ 2 0 4  ] 

= ~{5[(x , .  x2) 4 + ( x , .  y2) 4 + (x , .  z2) 4 

+ (y, .  x2) 4+ (y, .  y2) 4+ (y, .  z2) 4+ (z , .  x2) 4 

+ (z , .  y2) 4 + (z , .  z2) 4] - 9} 

Z332(n) =2 = ( s ~ 2  - s ~  - ~ + s G - ~ )  

= 15{3 P[(z , .  fi:)(z2. R:)(x,. x2)(y,. Y2)] 

- P[ (x,.  x2)(y, • y2)(z, • z2)]} 
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7 , 3 3 4 (  O ) 

--22 - - 2 - 2  
= $ 3 3 4  (s334- - g;~4 ~ + s G  -2) 

= -105P[(x~. R)(y~. R)(x2. R)(y2. R)(z~. z2)] 

+ 60P[ (zl. fi)(z2 • fi)(x~, x2)(y~ • Y2)] 

- 6 P [ ( x , .  x2)(y, • y2)(z~, z2)] 

z3~6(n) 
--22 __ ___ ( $ 3 3 6  ~ 2 ; 2 _  ~ . ~ 2 2  q_ ~ ; 3 2 6  2 )  

= (3){231(x,. R)(x2. R)(y,. R) 

x (Y2. R)(z,.  fi)(z2. R) 

- 189 e [ ( x l ,  fi)(Yl, fi)(X2, fi)(Y2. R)(zI. Z2)] 

+ 42P[(z,. fi)(z2. ~)(x , .  x2)(y, • y2)] 

- 2P[ (x,.  x2)(y, • y2)(Zl, z2)]}, 

where the totally symmetric projections are given by: 

6 P[ (x,.  x2)(y, • y2)(z,, z2)] 

= (x,. x2)(y, • y2)(z, • z2) + (x,. x2)(y,, z2)(z,. Y2) 

+ (x,.  Y2)(Yl. z2)(z,, x2) + (x,.  Y2)(Y, • x2)(z,, z2) 

+ (x,.  z2)(y,, x2)(z,. Y2) + (x,.  z2)(y, • y2)(z,, x2) 

18P[(z,. fi)(z2, fi)(x,,  x2)(y,. Y2)] 

= (zl. fi)(z2, fi)[(xl, x2)(yl. Y2)+ (xl. Y2)(Yl. x2)] 

+(zl R)(x2 fi)[(xl. Y2)(Yl .z2)+(xl .z2)(yl. Y2)] 
A 

+ (zl R)(y2 
^ 

+ (y~ RI(Y2 
^ 

+ (Yl R)(x2 
A 

+ (Yl R)(z2 
A 

+ (x, R)(x2 
A 

+ (x, RI(Y2 
^ 

+ (Xl R)(z2 

^ 
R)[(Xl 
^ 
Rl[(x, 
^ 
RI[(zl 
^ 
R)[(z, 

^ 
R)[(y, 

R)C(Y, 

z2)(yl 

x2)(z, 

y2)(x~ 

x2)(x, 

y2)(zl 

z2)(z, 

x2)+(xl x2)(yl z2)] 

z2) + (z, x2)(x, z2)] 

z2)+(zl z2)(xl Y2)] 

Y2)+(zl y2)(xl x2)] 

z2)+(Yl z2)(zl Y2)] 
x2)+(Yl x2)(zl z2)] 

fi)[(Yl X2)(Zl y2)+(Yl Y2)( z] X2)] 

9P[(xl .  fi)(y~. R)(x2. R)(y2. fi)(zl, z2)] 

= (x~. R)(y, .  R)[(x2. fi)(Y2. R)(z~. z2) 

+ (Y2. fi)(z2. R)(z,. x2) + (z2. fi)(x2, fi)(z~. Y2)] 

+ (x,. fi)(z~. R)[(x2. fi)(Y2. R)(Y~. z2) 

+ (Y2. R)(z2. R)(y,. x2) + (z2. fi)(x2. R)(y~ • Y2)] 

+ (y~. fi)(z,,  fi)[ (x2. fi)(Y2, fi)(x~, z2) 

+ (Y2. R)(z2. fi)(x2, x2) + (z2. R)(x2. fi)(x~. Y2)]. 

The normalization adjustments have been made to 
give Z3o 3 a maximum value of 2 when the C--  H bonds 
are pointing directly at each other, Z4o4 a maximum 
of 2 when two of the bond bisectors are collinear, 
and Z44o a maximum value of 1 when the axes are 
parallel. 

Thus, we have derived the first eight terms in the 
expansion of the scalar properties of two like tetrahe- 
dral molecules, so that they implicitly include all the 
symmetry contained in the usual definitions which 
use tetrahedral rotor functions (James & Keenan, 
1959; Maki, Kataoka & Yamamoto, 1979), but are in 
a simple form which can be computed very efficiently. 
This approach has already been used for C~h and 
approximate D3h-symmetry molecular fragments, in 
the studies on C12 and the azabenzenes (Price & Stone, 
1982, 1984), but the power, as well as maximum 
complexity, of this type of analysis is shown par- 
ticularly clearly for the higher symmetry oftetrahedral 
molecules. 

APPENDIX 2 

An investigation of the van der Waals philosophy for 
predicting molecular packing 

The use of van der Waals surfaces, either as physical 
space-filling molecular models or as the concept that 
two non-bonded atoms cannot be closer than the sum 
of their van der Waals radii, has a long history as a 
quick but effective way of understanding, checking 
and predicting molecular packing. The value of this 
approach is exemplified by Kitaigorodsky's (1973) 
use of space-filling molecular models to predict the 
crystal structures of hydrocarbons and, more recently, 
by the use of molecular graphics to analyse possible 
drug-receptor dockings. The use of this 'excluded- 
volume' model is equivalent to representing the inter- 
molecular potential as a step function, which is a very 
crude model for the forces which determine the pack- 
ing. However, it is easily applied by the non-specialist, 
and so will continue to be widely used when only a 
qualitative understanding of the molecular packing 
is required, such as checking the plausibility of X-ray 
structural refinements, or when a full simulation with 
a better model intermolecular potential is too difficult. 
The orientation-dependent functions, which were 
used to analyse the potential-energy surface for 
methane in the main paper, can also be used to 
investigate the use of van der Waals surfaces as an 
approximation to the more realistic atom-atom po- 
tential. 

The first test is to determine whether the minimum- 
energy separation for a fixed relative orientation of 
two methane molecules, on the isotropic atom-atom 
potential-energy surface, corresponds to a constant 
sum of van der Waals radii. This was investigated by 
finding the shortest intersite separation K at the 
minimum-energy separation for each orientation, and 
expanding K(O) in terms of the Zz, z~(O), as in (2). 
K always corresponded to an H H intersite separation. 
Although K varied between 2.726 and 3.273 A,, the 
r.m.s, error in the minimum-energy separation predic- 
ted by assuming that the shortest intersite distance 
was constant [i.e. K(O)= Kooo=2.8497 A,] was only 
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0"0985/~, showing that assuming that the shortest 
H H distance is constant at the mininum-energy con- 
tour is a far better approximation than assuming that 
the centre-of-mass separation is constant (r.m.s. error 
0.20A). Since the isotropic atom-atom potential 
assumes that the potential from each H site is spheri- 
cally symmetric, K(O) would be constant if the only 
contribution to the potential came from the closest 
intermolecular pair of sites. Hence, the error in treat- 
ing K(O) as constant is a measure of the importance 
of the other site-site interactions in determining the 
minimum-energy separation. The convergence of the 
expansion of the variations in K (/2) with orientation 
is very poor, with r.m.s, error of 0.0679 A for an 
eight-term expansion. Hence, there is no simple 
model for an anisotropic van der Waals radius for 
hydrogen which would model the effects of all the 
interactions, and give a significantly better prediction 
of the minimum-energy separation corresponding to 
an isotropic atom-atom potential. 

The usefulness of the van der Waals radii approach 
to approximating the anisotropy of the potential sur- 
face, and predicting packing, can be investigated 
more directly by comparing the centre-of-mass separ- 
ations corresponding to the first contact between the" 
van der Waals surfaces of the molecules Rv(O) with 
the minimum-energy separation p(O). As discussed 
above, the most appropriate van der Waals surface 
model for an isotropic atom-atom potential surface 
is the usual superposition of spheres of radii rc and 
rH centred at the C and H interaction sites. However, 
the choice of values for rc and rH is not well defined. 
As well as using published radii, such as those of 
Bondi (1964), we can also derive radii specifically 
appropriate to the surface. We have already derived 

1 rH = ~K0oo as an appropriate choice of radii to repro- 
duce p(12) from the investigation of K(O), the short- 
est intersite separation at the minimum-energy separ- 
ation p(O). The choice of corresponding carbon 
radius is immaterial, since all the closest intersite 
contacts were H H. Other appropriate radii can be 
defined by noting that the assumption that the inter- 
molecular potential is dominated by the shortest dist- 
ance between shapes representing the molecules is 
implicit in the use of van der Waals radii to analyse 
the packing of the molecules. This assumption is 
reasonable, because the closest parts of the charge 
clouds will be interacting most strongly, and this 
interaction is particularly dominant when there is 
overlap of the charge clouds, because of the exponen- 
tial nature of the resulting repulsion. Thus, the sum 
of the van der Waals radii of two atoms should 
correspond to a separation where the intermolecular 
interaction between the atoms is sufficiently strong 
that the intermolecular forces from other interactions 
cannot move the atoms closer. Hence, we can define 
a van der Waals surface by an equipotential of the 
dominant interaction, and use the separations at 

Table 5. Comparison of different van der Waals 
surfaces 

Expansion of R, the centre-of-mass separation, at point of contact 
between surfaces defined by the van der Waals radii: 

E~on = 0 E ~ n  = 0- 5 
Bondi  1 ~Kooo kJ mol  

rc  (,~,) 1.7 0"0 --'1.733 =1"666  
r H (/~) 1.2 1.4249 =1 .455  ~-1"246 

Coetficient of 
Zoo a (~)  3.8035 4.2314 4.2951 3.8793 
Z3o 3 (,/~) 0.2833 0"3381 0.3362 0'3123 
Z33 o (/~) -0.0293 -0.0297 -0.0296 -0.0325 
Z4o4 (/~) -0.1256 -0.0824 -0'0842 -0.1109 
Za4 o (/~) -0.0142 -0.0249 -0'0240 -0.0195 
Z332 (/1.) 0.0311 0"0263 0"0252 0"0321 
Z334 (/~.) -0.0142 -0.0160 -0"0159 -0"0207 
Z336 (/~) -0.0775 -0.0953 -0.0904 -0"0809 
R.m.s. error 0.0575 0.0863 0.0841 0.0711 
R.m.s. value 3.8166 4.2420 4.3056 3.8916 
Max. value 4.439 4-889 4-950 4-533 
Min. value 3.4 3.362 3.466 3-331 
Number of C C contacts 28 0 1 11 
Number of C H contacts 146 0 14 91 
Number of H H contacts 282 456 441 354 

which the H H, C H and C C interactions have the 
same specified energy to define an effective van der 
Waals radius. To be precise, we define Re(O) as the 
largest centre-of-mass separation at which there is an 
intersite contact with energy Eoon. The case of Econ = 0 
corresponds to a H H separation of 2.910 ~ ,  a C C 
separation of 3 .466~ and a C H separation of 
3.190/~, giving effective radii rH"  1"455 /~, rc ~-- 
1"733/~, and a tiny error in adding the effective radii 
for the C H contact. 

Table 5 compares the expansion of the centre-of- 
mass separations corresponding to van der Waals 
contacts for four different definitions of the van der 
Waals surfaces, which can be contrasted with the 
expansion of the minimum-energy separation p(O) 
(Table 2). The anisotropic coefficients are qualita- 
tively similar, with Z3o3, Z4o4 and 7,336 being the 
largest, showing that it is a reasonable crude approxi- 
mation to map out the potential surface by consider- 
ing the closest contacts between molecules. However, 
at a more quantitative level, there are significant 
differences. The similarity in the expansion of Rv(O) 
for the Bondi radii and Re(I2) for Econ = 0.5 kJ mo1-1, 
and also for Ro(O) defined by Kooo and Re(O) for 
E~on =0,  can be attributed to the similarity in the 
radii, emphasizing that van der Waals radii can be 
considered as energy contours. The expansions are 
different for these two sets of radii because they 
correspond to qualitatively different shapes, and 
hence have a different proportion of C C, C H and 
H H closest contacts. The carbon radii for the Bondi 
and E¢on=0"5 kJ mo1-1 sets are relatively large, so 
that the carbon sphere protrudes above the plane 
which is tangential to three hydrogen spheres. The 
carbon sphere is below this plane for the radii defined 
by E~on = 0. The hydrogen-only surface is a superposi- 
tion of spheres with a dimple at the centre of the face. 
The latter two shapes correctly predict that the 
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molecules can get closest for the global min imum 
orientation. This success in predicting a global 
min imum which has six equivalent  closest H H con- 
tacts, occurs despite the fact that  the van der  Waals 
model  does not take account  of  the number  of  close 
contacts,  p robably  because small centre-of-mass 
separat ions  are inevitably associated with multiple 
contacts for methane  molecules.  However,  the sur- 
faces with a prot ruding carbon sphere give rise to 
many  orientat ions with C C as the closest contact,  
and so cannot  predict  the dimer structure. 

This s tudy shows that  the use of  van der  Waals  
radii can be remarkably  successful if the opt imum 
radii for the actual potential  are used, giving a useful 
mapping  of  the anisot ropy of  the repuls ion-disper-  
sion potential .  However ,  plausible radii can give mis- 
leading results. The appropr ia te  ' radii '  should be 
orientation dependent  for atoms with non-spherical  
charge distributions;  an analysis of close contacts 
in molecular  crystal structures by Nyburg  & Faerman  
(1985) has demons t ra ted  that  the effective van der  
Waals  radius is indeed anisotropic for some 
heteroatoms.  Thus, the assumpt ion of  spherical 
atoms, or inappropr ia te  molecular  shapes,  may  well 
cause significantly worse errors in the use of  van der 
Waals  radii to analyse molecular  packing than the 
intrinsic error  in modell ing molecules as hard  shapes.  
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